|
이번 논문 발표를 통해 가우스랩스는 AI 기반 가상 계측 솔루션 ‘Panoptes VM(Virtual Metrology)’의 예측 정확도를 높이는 알고리즘인 ‘통합 적응형 온라인 모델(Aggregated AOM)’을 소개했다. 계측은 반도체 제조 과정에서 반도체 소자의 물리적, 전기적 특성이 생산 공정별로 제대로 충족되었는지 확인해 생산성을 높이는 작업이다.
SK하이닉스는 지난 2022년 12월부터 Panoptes VM을 도입해 현재까지 5000만장 이상의 웨이퍼에 가상 계측을 진행했다. 이를 시간으로 환산하면 초당 1개 이상의 웨이퍼를 가상 계측한 것으로, 회사는 이 소프트웨어의 성능에 힘입어 공정 산포를 약 29% 개선할 수 있었다고 설명했다.
가우스랩스가 학회에서 새로 공개한 알고리즘은 기존 AOM을 업그레이드한 버전이다. 동일한 패턴을 공유하는 장비 등의 데이터를 통합 모델링해 데이터 부족 문제를 해결하는 동시에 예측 정확도를 높였다.
가우스랩스는 학회 발표에서 ‘범용 노이즈 제거 기술’도 소개했다. 반도체 계측 중 일부 작업은 반도체 구조 검사용 전자 현미경(CD-SEM) 이미지를 바탕으로 진행된다. 극도로 작은 나노미터 단위까지 정확하게 측정하기 위해서는 전자 현미경 이미지의 노이즈(잡티)를 제거해 해상도를 높이는 것이 중요하다.
가우스랩스가 개발한 이 기술은 AI를 이용해 다양한 형태의 이미지에서 노이즈를 한번에 제거해 준다. 회사는 “SK하이닉스와 테스트를 진행한 결과, 이미지 획득 시간이 기존 기술의 1/4까지 단축되는 것을 확인했다”며 “앞으로 이 기술이 반도체 계측 장비의 생산성을 42% 개선할 것”이라고 전망했다.